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The stability of the laminar flow in a rectangular duct of an arbitrary aspect ratio is 
investigated numerically by expanding the flow fields of both the main flow and the 
disturbance into series of Legendre polynomials and solving the eigenvalue problem 
of the resulting matrix equation. The stability of the flow is found to depend upon 
the aspect ratio of the duct and the mode of the disturbance. The flow is unstable to 
two of the four possible modes of different parity and stable to the other two. With 
respect to the most unstable mode, the flow is stable or unstable according as the 
aspect ratio is below or above a critical value of 3.2 respectively, and the critical 
Reynolds number decreases monotonically with increasing aspect ratio towards the 
known value of 5772 for plane Poiseuille flow. The flow field of the disturbance shows 
the existence of strong vortex layers along the critical layer at which the velocity 
equals the phase velocity of the disturbance. 

1. Introduction 
It is well known that viscous flows with given boundaries are laminar a t  relatively 

small Reynolds numbers and become turbulent at large Reynolds numbers. The onset 
of turbulence in the flows is accounted for in terms of the instability of the 
corresponding laminar flows with respect to external disturbances. For flows of 
simple geometry, we can find certain critical values of the Reynolds number, under 
and above which the flows are stable and unstable respectively. 

The notion of the stability of laminar flows is most clearly defined with respect to 
small disturbances, since the problem is then linearized with respect to the 
magnitude of disturbances and the stability characteristics of the flows become 
independent of the details of the disturbances. The linear theory of stability was first 
applied successfully by Tollmien (1929) and Schlichting (1933) to plane Poiseuille 
flow and the Blasius boundary layer and their theoretical results were first confirmed 
experimentally by Schubauer & Skramstad (1947). After the eminent achievements 
by these authors on the fundamental nature of fluid flows, the stability characteristics 
of laminar flows have been investigated in great detail both theoretically and 
experimentally, and developments in this field have brought about rapid progress in 
engineering applications. 

The theory of stability has so far been applied to relatively simple laminar flows 
whose velocity distributions depend only upon a space variable a t  least in an 
approximate sense. Two-dimensional and axisymmetric flows including plane 
Poiseuille flow, the Blasius boundary layer, free mixing layers, jets and wakes belong 
to this category offlows. On the other hand, those flows that have more complex 
velocity distributions have been left untouched since the semi-analytical methods 
which were useful for the simple flows become cumbersome for the complex flows. 
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These flows may be treated more conveniently by numerical methods together with 
the orthogonal function expansion of the flow field. Thanks to recent progress in 
high-speed computation technology, such numerical analysis of the stability problem 
has now become available. 

We investigate in this paper the stability of the laminar flow in a straight 
rectangular duct. This type of flow is often encountered in engineering practice, 
mostly in a turbulent state. While the current theoretical results on turbulent duct 
flows are mostly based on empirical closure assumptions, it seems desirable to clarify 
the fundamental mechanism of onset of these turbulent flows on a rigorous 
mathematical basis. 

The stability of rectangular duct flows appears to deserve attention in itself. The 
aspect ratio, A say, of the rectangular cross-section varies from one to infinity. In the 
limit of A = 1, we have the flow in a square duct which seems to be stable in view 
of its similarity to the Hagen-Poiseuille flow in a circular tube whose stability had 
already been demonstrated (see Drazin &, Reid 1981). In the other limit ofA + co, the 
duct flow tends to plane Poiseuille flow between two parallel planes which is known 
to be unstable with the critical Reynolds number R, = 5772 (see Orszag 1971). Thus, 
there must exist some critical value of the aspect ratio, A ,  say, below and above 
which the duct flow is stable and unstable respectively. It is interesting to work out 
quantitatively the stability characteristics of the duct flows, and in fact it will be 
shown below that A ,  = 3.2 for the most unstable mode of the disturbance. 

2. Mathematical formulation 

equations of motion and continuity : 
The velocity u and the pressure p of the flow are governed by the following 

au 1 
-+(u.grad)u = -gradp+-Au, 
at R 

divu = 0, (2) 

where all variables have been non-dimensionalized using a characteristic length L, 

(3) 
and velocity U, of the flow, and 

R = U,L,/v ,  

v being the kinetic viscosity of the fluid, represents the Reynolds number 
characterizing the flow. 

Take the rectangular coordinate x = (x, y, z )  with the x-axis along the central axis 
of the duct and the y- and z-axes each parallel to the narrower and wider sidewalls 
respectively. If we express the widths of the narrower and wider walls as 2L0 and 
2ALo respectively, the walls are expressed in non-dimensional form as y = f 1, 
z = + A ,  where A (2 1) represents the aspect ratio of the rectangular cross-section of 
the duct. Then, the boundary conditions for (1) and (2) are given by 

u = O  a t  y = + l  and z = f A .  (4) 
I n  order to solve the boundary-value problem related to (l), (2) and (4), we expand 

the velocity IC and the pressure p into series of Legendre polynomials with respect to 
y and z, but the detailed expressions for the cases of the stationary laminar flow and 
its stability will be given separately. 
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3. Stationary laminar flow 
If we assume the stationary laminar flow in a rectangular duct to be parallel to the 

axis of the duct and unchanged in the axial direction, the velocity u and the pressure 
p are expressed in the following form: 

Substituting (5 )  into (1)  and (2), we find that (2) is automatically satisfied and (1) is 
reduced to the following equations : 

ap ap ap 
ax ay az 0, - - - K  = const., - --= - _  

(&+$) U(y ,  z )  = -RK, (7) 

where K is a positive constant representling the pressure drop downstream. It also 
follows from (4) that 

which gives the boundary condition for (7). 
The velocity distribution U(y ,  z )  of the stationary laminar flow is thus obtained by 

solving a two-dimensional potential equation (7) under the boundary condition (8). 
This problem has already been solved by Saint-Venant (1855) for the mathematically 
equivalent problem of the torsion of an elastic column with rectangular cross-section. 
He expressed the solution in terms of a series of trigonometric and hyperbolic 
functions and obtained mathematical expressions for the quantities corresponding to 
the velocity distribution U(y, z )  and the non-dimensional flux per unit time, 

U(y , z )  = O  a t  y = + l  and z = + A ,  (8) 

J-1 J - A  

However, we shall employ expansions in terms of Legendre polynomials in view of 
the convenience of dealing with the stability problem in the same mathematical 
framework. 

As easily seen from the linearity of the boundary-value problem, the magnitude of 
the solution U(y, z )  is proportional to RK, so that if a solution is obtained for a certain 
value of RK the solution for an arbitrary value of RK is immediately derived from it. 
First, calculate a solution for RK = 2 and find the value of U(0,O) for RK = 2.  Then, 
putting 

RK = 2/(U(O,O) for RK = 2 ) ,  (10) 

we obtain the solution U(y, z )  which satisfies the condition, 

U(0,O) = 1, (11)  

that is equivalent to adopting the dimensional velocity on the central axis of the duct 
as the characteristic velocity U,. 

Now, we expand the velocity U(y ,  z )  into a series of Legendre polynomials in the 
rectangular domain - 1 < y < 1, - A  < z < A .  In view of the evenness of (7) and the 
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boundary condition (8) for both the variables y and 2, the solution must be an even 
function of y and x and the expansion must involve only polynomials of even orders : 

where Pm represents the Legendre polynomial of order m. 

functional, 
Equation (7 )  with RK = 2 is equivalent to  the stationarity condition for the 

Substituting (12) into (13) we obtain the following expression : 

M N  

J[m = c 2 UkC(BkCmn Umn-4ck0 c C O ) ,  
k ,  m-0 1 ,  n-0 

I 1 with 
BkCmn = Dkm Cln +A2 ckm DCn, 

2 
P z m ( ~ ) P z n ( ~ )  dx = ~ 

4m+ 1 

D,, = J:,%------ dp*?L(x)  dx 
dx 

J 2m(m+1) for m < n ,  
2n(n+1) for m a n .  

where S,, stands for Kronecker's delta. Applying the stationarity condition, 

au/aukc=O for k = 0 , 1 ,  ..., M ;  Z = O , I  ,..., N ,  (16) 

to (14),  we obtain the equations 

M N  

c c Bklmn - 2ck0 c10 + 2al + 2 p k  = O, (17) 
m-0 n-0 

for k = 0 , 1 ,  ..., M ;  Z = O , l ,  ..., N ,  

where the a, and pk  represent indeterminate coefficients. 

conditions for the Urn, as follows: 
On substitution from ( 1 2 ) ,  the boundary condition (8) is written in the form of the 

M 

~ U r n n = O  for n = 0 , 1 ,  ..., N, 
rn-0 

C.U,,=O for m = 0 , 1 ,  ..., M .  
N 

n-0 

Equations (17),  (18) and (19),  being composed of (M+ 1 )  (N+ l ) ,  (N+ 1 )  and (M+ 1) 
equations respectively, constitute a closed system of linear equations for the same 
number of unknowns, the Umn, ac and pk .  By solving these equations numerically the 
coefficients Urn, are determined, and substituting the results into ( 1 2 )  yields the 
velocity distribution U(y, z )  for RK = 2. Then applying the transformation ( l o ) ,  we 
finally obtain the velocity distribution U(y, x )  which satisfies the condition (1 1 ) .  
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FIGURE 1. Isovelocity contours for U = 0, 0.1, .. ., 1.0 and velocity profiles at sections, 
y o r z = O , O . i  ,..., l . O . ( a ) A = 3 ,  ( b ) A = 4 .  

4. Numerical results for the laminar flow 
The numerical work has been carried out using FACOM VP200 and VP400 

computers of the Data Processing Center of Kyoto University under the double- 
precision scheme. 

The velocity distribution U ( y ,  z )  has been calculated for the aspect ratios A = 1, 
2, ..., 5, 10,20 and 30. The number of terms in the expansion (12) have been chosen 
as M = 20 for all values of A, and N = 20 for A < 3, 30 for A = 4 and 5, and 40 

1 h-2 
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A 1 2 3 4 5 10 20 30 

U(0 ,  0) 0.58937 0.91097 0.98146 0.99615 0.99920 1.0000 1.0000 1.0000 

RK for 3.3935 2.1955 2.0378 2.0077 2.0016 2.0000 2.0000 2.0000 

'Joe = Q n J u  0.47704 0.50206 0.53658 0.56380 0.58310 0.62465 0.64566 0.65266 

Q n d I u  0.281 15 0.45736 0.52663 0.56163 0.58263 0.62465 0.64566 0.65266 

TABLE 1 .  Non-dimensional fluxes Qnd for constant maximum velocity (U(0,O) = 1 )  and for 
constant pressure gradient (RK = 2) 

for RK = 2 

U(0,O) = 1 

for U(0, 0) = 1 

for RK = 2 

0.7 

2 
3 

0.6 

p 0.5 5 
II 

2 
OI 

Y 

5 

0.4 

0.3 

0.2 I I I I I  I I 

A 

FIGURE 2. Non-dimensional flux Q n d ( R ~  = 2). The broken line refers to the formula (23). 

for A 2 8. These values of M and N have been confirmed to give accurate values to 
digits for Urn%, m < M ,  n < N and values less than lop6 for Urn,,, m 2 M ,  n 2 N .  

The numerical results for A = 3 and 4 are shown graphically in figure 1 in the form 
of the isovelocity contours and the velocity profiles a t  various sections of constant 
y or z. 

For large aspect ratios, A 2 5 say, the velocity distribut,ion in the central region 
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W Y ,  z )  = 1 - y2, 
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4 - A  < z < A - 4 becomes almost identical to that of plane Poiseuille flow between 
two parallel planes, 

while it takes a universal distribution independent of A in the terminal regions - A  
< z < 4-A and A - 4  < z < A .  

(20) 

The non-dimensional flux Qnd is easily derived from numerical result as 

Qnd = UOO > (21) 

which immediately follows from (12). The numerical result is given in table 1 and 
shown graphically in figure 2. 

The dimensional flux Qd under a given pressure gradient is immediately derived 
from Qnd as 

Q - -L(g) L;Q,,(RK = 2). 
d -  2p dx 

where ,u = pv is the dynamic viscosity of the fluid. 

ratios, Qnd satisfies the following asymptotic formula for large A :  
Reflecting the asymptotic form of the velocity distribution U(y, x )  for large aspect 

Q n d ( R ~  = 2)/4A = Q-0.420l/A, (23) 

where the constant has been determined by the numerical results for A 2 3. Actually, 
(23) is valid for A 2 3 within an error of lo-*, so that it can be used as a practical 
formula for the flux of the flows for aspect ratios above 3. 

5. Stability of the laminar flow 
Now we proceed to the stability problem of the laminar flow in a rectangular duct 

which was obtained in the last section in the form of the Legendre polynomial 
expansion. Denoting the velocity and the pressure of a small disturbance by ti and 
2; respectively, we can express the total velocity and pressure fields as follows: 

If we decompose the disturbance fields into the Fourier series with respect to x, 

where a represents the wavenumber along the x-axis and c is a complex constant 
generally dependent on a, c = c, + ici, c, representing the phase velocity and ac, the 
logarithmic amplification rate of the disturbance of the wavenumber a. 

Substituting the decompositions (24) and (25) into ( 1 )  and (2) and taking into 
account that  U and P of the laminar flow already satisfy the equations, we obtain 
a set of nonlinear equations for the disturbance amplitudes ii and 9. Since, however, 
we are dealing with small disturbances, we can neglect nonlinear terms with respect 
to d and 9, and we obtain a set of linear equations for a = (G,d,G) and 17. 
Furthermore, eliminating .ii and 9 from these equations, we finally obtain the 
following simultaneous equations for the components v" and 6 : 
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where 8 and 0 are even and odd operators respectively defined as follows: 
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It is also understood that the exchange of y and z within the operators & and 0 in 
(26) does not apply to the arguments of U(y, z )  in (27) and (28).  These equations give 
an extended version of the Orr-Sommerfeld equation for a basic flow of one- 
dimensional variation U(y) (see Rosenhead 1963) to the case of two-dimensional 
variation U( y ,  z ) .  

The boundary conditions for (27) are immediately derived from (4) as follows: 

Since the Legendre polynomials themselves do not satisfy such boundary conditions, 
we construct the following combinations of the polynomials for the purpose of 
expressing 6 and 8 :  

i F2n = P2n+2-P0, 
F2’2,+1 = P2n+3 ; 

G2,  = P2,+,-+(n+2) (2n+5)P2+f(,n+ 1) (2n+7)P0, 

G2,+l = P2,+,-$(n+2) (2n+7)P3+$(n+ 1) (2n+9)P1, 

which respectively satisfy the following boundary conditions : 

1 Fn( _+ 1) = 0, 
G,( & 1)  = Gh( & 1)  = 0, 

where a prime denotes a derivative. Then, v” and 12 are expanded into series of the 
polynomials F, and G, as follows: 

m-0 n-0 

which automatically satisfy the boundary conditions (29). 
On substitution of (32) into (27) and (28) and taking account of the orthogonality 

of the P,, we obtain a matrix equation for the unknown expansion coefficients urn, 
and w,, in the following form: 

AX = cBX, (33) 

(34) 

represents the unknown vector, A is a matrix whose elements consist of integrals of 
double or triple products of the P, and their derivatives and the Umn, and B is a 
matrix whose elements consist of integrals of double products of the P, and their 
derivatives. 

The eigenvalue problem of the matrix equation (33) has been solved numerically 
using the QR algorithm with the double-precision scheme. The eigenvalue of c is thus 

where X=(;)= (Voo,...~vMN;Woo, . .- ,w,,)  T 
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I1 

IV 

FIQURE 3. Velocity fields of modes I, IT, 111 and I V  of the disturbance in the (y, %)-plane. 
A = 1 ,  R = 1000, a = 1.0, phase arbitrary. 

determined for various values of the parameters: the aspect ratio A ,  the Reynolds 
number R,  and the mode and the wavenumber 01 of the disturbance. The disturbance 
velocities (6, 6) are determined by substituting the numerically obtained eigenvector 
(34) into (32). 

6. Numerical results of the stability 
For the basic flow whose velocity U(y,z) is an even function of y and x ,  as is the 

case for (12), the disturbance equations allow the following four modes of solution with 
different parity : 

1 : (G(e, e), G(o,  o ) ) ,  11: (6(e, o) ,  ~ ( o ,  el), 

I11 : (6(o, e), 6(e ,  o)) ,  I V  : (G(o, o ) ,  @(e, e)), 

where, for instance, v"(e,o) means that 6 is an even and odd function of y and z 
respectively. The general features of the velocity field of each mode may be observed 
in figure 3 which shows the instantaneous velocity fields of the four modes for 
A = 1, R = 1000 and a = 1 with unspecified initial phase. 

For the square cross-section A = 1,  the modes I and IV become identical and there 
remain only three different modes. I n  the limit of A + 00,  on the other hand, the 
modes I and I1 tend to the symmetric 5-disturbance and the modes I11 and IV tend 
to the antisymmetric disturbance, the 6-component disappearing in either case. The 
plane Poiseuille flow corresponding to the limit A + 00 is known to be unstable with 
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A 3.5 4 5 6 8 co 
R,  36600 18400 10400 8200 6800 5772 

a, 0.71 0.80 0.91 0.94 0.98 1.02 

TABLE 2 .  Critical values R, and a, for the mode-I disturbance 

1.5 

1 .o 

a 

0.5 

0 
R 

FIGURE 4. Neutral curves near the critical points for various aspect ratios: 
A = 8, 6, 5, 4 and 3.5 for mode I ;  and A = 8 and 6 for mode 11. 

the critical Reynolds number R = 5772 with respect to  symmetric 5-disturbance and 
stable with respect to the antisymmetric disturbance (Orszag 1971). Thus, modes I 
and I1 are expected to have finite critical Reynolds numbers for certain ranges of 
aspect ratio A ,  whereas there is no such a guarantee for the modes I11 and IV.  

The stability of the basic flow has been examined with respect to the four modes 
for Reynolds numbers up to 50000 and wavenumbers below 1.1. It is found that 
there is no particular mode that is most unstable or least stable throughout all the 
ranges of the parameters, but mode I is the most unstable in the sense that it becomes 
unstable first with increasing values of the aspect ratio and the Reynolds number. 
Thus, according to  the eigenvalues of this mode, the flow is stable for small aspect 
ratios A < 3 and unstable for large ones A 2 4 with the critical Reynolds number R, 
and the wavenumber a, as given in table 2. 

The value of R, for each aspect ratio A has been determined as the minimum 
Reynolds number on the neutral stability curve in the (R, a)-plane as shown in figure 
4, and the critical wavenumber a, is defined as the wavenumber corresponding to 
R = R,. The values of R, and a, for A = co have been calculated separately by solving 
the &disturbance equation in this limit, and they are in perfect agreement with the 
values given by Orszag (1971) for plane Poiseuille flow, up to the indicated digits. 

Figure 4 shows that the critical point (R,, a,) for mode I moves along a smooth line 
with increasing A and seems to approach the point for plane Poiseuille flow in the 
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A 6 8 

R, 31500 11000 

a, 0.69 0.89 

TABLE 3. Critical values R, and a, for the mode-I1 disturbance 

FIQURE 5. Flow patterns of the disturbance in the (y, 2)-plane. A = 5, R = 12000, a = 0.9, phase 
arbitrary. (a) Velocity vector field, ( b )  isovorticity contours, (c) isovelocity contours of the main 
flow. Broken line indicates the critical layer, U = c, = 0.24. 

limit of A -+ 00. With decreasing A ,  the critical point moves along the line toward 
larger values of R, and seems to tend to infinity for a certain critical value of A .  It 
is difficult to determine accurately the critical aspect ratio A ,  that separates the 
stability and instability of rectangular duct flow, but extraporation from the above 
table gives A ,  = 3.2 as a rough estimate. 

Mode I1 of the disturbance, which also reduces to the symmetric C-disturbance in 
the limit of A + 00, is found to be unstable, but with higher value of R, for each 
aspect ratio A than mode I, as shown in table 3 and Figure 4. 

Modes 111 and IV, both of which reduce to the stable antisymmetric &disturbance 
in the limit of A -+ GO, are found to be stable for the range of the parameters 
examined. 

The velocity field and the isovorticity contours of the disturbance of mode I in a 
cross-sectional plane are displayed in figures 5 ( a )  and 5 ( b )  respectively for A = 5, 
R = 12000 and a = 0.9. As easily seen from the corresponding neutral curve in 
figure 4, this disturbance is slightly unstable at  R = 12000 and stable at  R = 10000, 
but the velocity and vorticity fields for these Reynolds numbers are found to be 
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almost identical to each other. It may be observed in figures 5 ( a )  and 5 ( b )  that the 
disturbance fields contain thin regions of very high shear along the critical layer 
U = c, = 0.24 which is indicated by a broken-line contour in figure 5(c).  

7. Comparison with experiments 
A number of experiments have so far been done on the instability and transition 

of rectangular duct flows of various aspect ratios. The earlier works by Schiller (1923, 
A = 1 and 3), Davies & White (1928, A = 38 to 710), Cornish (1928, A = 2.92) and 
others were, however, all hydraulic experiments which detect the transition by 
measuring the pressure drop along the flow direction. The critical Reynolds numbers 
obtained by these authors are considerably lower than theoretical values, but in view 
of the nature of their measurements it is likely that these experimental values are 
related with some sort of nonlinear instability rather than the linear instability of 
present concern. 

Direct measurement of the instability of the flow was first made by Kao & Park (1970, 
A = 8) using the modern technique of examining the growth or decay of the 
controlled artificial disturbances. Their results, expressed as the neutral stability 
curve in the (R, a)-plane, give the critical Reynolds number R, = 2600 and a, = 1.5. 
Since their definition of the Reynolds number is based on the hydraulic diameter 
d(  = 4AL,/(1 + A ) )  and the mean velocity Urn( = &/4ALt, fJ being the volume flux), 
their value of R, for A = 8 corresponds to R, = 1191 in the present definition. These 
experimental values of R, and a, do not agree with the corresponding theoretical 
values for either modes I or 11. 

At present we have no clear explanation for this discrepancy, but there are some 
reasons to believe that these experimental values are not related to the linear 
instability of the flow. First, the flow with a finite aspect ratio A is considered to be 
stabilized by the presence of the endwalls compared with that of infinite A or plane 
Poiseuille flow, so that the critical Reynolds number for A = 8 should be higher than 
R, = 5772 for the latter. Theoretical results that give higher critical Reynolds 
number with decreasing aspect ratio A for both the modes I and I1 actually support 
this conjecture. Secondly, the experimental neutral curve covers a much wider 
wavenumber range than the corresponding theoretical curves in figure 5 and the 
unstable region includes the zero-wavenumber range which is known to be linearly 
stable. In view of this the experimental instability obtained by Kao & Park (1970) 
using controlled excitation could be attributed to a sort of nonlinear subcritical 
instability. More detailed and precise measurements are needed in order to establish 
experimentally the linear stability characteristics of the flow. 

It is a great pleasure to be able to contribute this article to the special volume of the 
Journal of Fluid Mechanics dedicated to Professor G. K. Batchelor on his seventieth 
anniversary. This work has been partially supported by the Grant in Aid for 
Scientific Research from the Ministry of Education, Science and Culture. 
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